Package: geohabnet 2.1.3

Krishna Keshav

geohabnet: Geographical Risk Analysis Based on Habitat Connectivity

The geohabnet package is designed to perform a geographically or spatially explicit risk analysis of habitat connectivity. Xing et al (2021) <doi:10.1093/biosci/biaa067> proposed the concept of cropland connectivity as a risk factor for plant pathogen or pest invasions. As the functions in geohabnet were initially developed thinking on cropland connectivity, users are recommended to first be familiar with the concept by looking at the Xing et al paper. In a nutshell, a habitat connectivity analysis combines information from maps of host density, estimates the relative likelihood of pathogen movement between habitat locations in the area of interest, and applies network analysis to calculate the connectivity of habitat locations. The functions of geohabnet are built to conduct a habitat connectivity analysis relying on geographic parameters (spatial resolution and spatial extent), dispersal parameters (in two commonly used dispersal kernels: inverse power law and negative exponential models), and network parameters (link weight thresholds and network metrics). The functionality and main extensions provided by the functions in geohabnet to habitat connectivity analysis are a) Capability to easily calculate the connectivity of locations in a landscape using a single function, such as sensitivity_analysis() or msean(). b) As backbone datasets, the geohabnet package supports the use of two publicly available global datasets to calculate cropland density. The backbone datasets in the geohabnet package include crop distribution maps from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> "Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and International Food Policy Research Institute (2019) <doi:10.7910/DVN/PRFF8V> "Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4". Users can also provide any other geographic dataset that represents host density. c) Because the geohabnet package allows R users to provide maps of host density (as originally in Xing et al (2021)), host landscape density (representing the geographic distribution of either crops or wild species), or habitat distribution (such as host landscape density adjusted by climate suitability) as inputs, we propose the term habitat connectivity. d) The geohabnet package allows R users to customize parameter values in the habitat connectivity analysis, facilitating context-specific (pathogen- or pest-specific) analyses. e) The geohabnet package allows users to automatically visualize maps of the habitat connectivity of locations resulting from a sensitivity analysis across all customized parameter combinations. The primary function is sean() and sensitivity analysis(). Most functions in geohabnet provide as three main outcomes: i) A map of mean habitat connectivity across parameters selected by the user, ii) a map of variance of habitat connectivity across the selected parameters, and iii) a map of the difference between the ranks of habitat connectivity and habitat density. Each function can be used to generate these maps as 'final' outcomes. Each function can also provide intermediate outcomes, such as the adjacency matrices built to perform the analysis, which can be used in other network analysis. Refer to article at <https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html> to see examples of each function and how to access each of these outcome types. To change parameter values, the file called parameters.yaml stores the parameters and their values, can be accessed using get_parameters() and set new parameter values with set_parameters(). Users can modify up to ten parameters.

Authors:Krishna Keshav [aut, cre], Aaron Plex [aut], Garrett Lab [ctb], Karen Garrett [aut], University of Florida [cph, fnd]

geohabnet_2.1.3.tar.gz
geohabnet_2.1.3.zip(r-4.5)geohabnet_2.1.3.zip(r-4.4)geohabnet_2.1.3.zip(r-4.3)
geohabnet_2.1.3.tgz(r-4.4-any)geohabnet_2.1.3.tgz(r-4.3-any)
geohabnet_2.1.3.tar.gz(r-4.5-noble)geohabnet_2.1.3.tar.gz(r-4.4-noble)
geohabnet_2.1.3.tgz(r-4.4-emscripten)geohabnet_2.1.3.tgz(r-4.3-emscripten)
geohabnet.pdf |geohabnet.html
geohabnet/json (API)
NEWS

# Install 'geohabnet' in R:
install.packages('geohabnet', repos = c('https://garrettlab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/garrettlab/habitatconnectivity/issues

On CRAN:

agriculturecropgeographical-information-systemgeographynetwork-analysisnetworkssurveillance

6.64 score 7 stars 11 scripts 110 downloads 56 exports 72 dependencies

Last updated 5 months agofrom:f90dbcc358. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:.indices%>%betweenessclosenessconnectivitycropharvest_rastcrops_rastdegreedist_methodsevgeoscale_paramget_parametersget_rastersglobal_scalesgplothci_diffhci_meanhci_variancehost_density<-inv_powerlawload_parametersmapspammonfredamseanmsean_onrastndplotneg_exponn_sumnode_strengthpagerankreset_paramsresorisk_indicessa_onrastersscalesseansearch_cropsensitivity_analysisset_global_scalesset_parameterssetmapssetpropssp_rastSTR_BETWEENNESSSTR_CLOSENESS_CENTRALITYSTR_DEGREESTR_DISTANCE_MATRIXSTR_EASTSTR_EIGEN_VECTOR_CENTRALITYSTR_NEAREST_NEIGHBORS_SUMSTR_NODE_STRENGTHSTR_PAGE_RANKSTR_WESTsupported_metricssupported_sourcestiff_torast

Dependencies:askpassaudiobeeprcachemclassclassIntclicodetoolscolorspaceconfigcpp11curldata.tableDBIdigeste1071easycsvfansifarverfastmapfuturefuture.applygeodatageosphereggplot2globalsgluegtablehttrigraphisobandjsonliteKernSmoothlabelinglatticelifecyclelistenvmagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslparallellypatchworkpillarpkgconfigproxyR6RColorBrewerRcpprlangrnaturalearths2scalessfspstringistringrsysterratibbleunitsutf8vctrsviridisLitewithrwkyaml

Analyzing risk index using habitat connectivity

Rendered fromanalysis.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-03-15
Started: 2023-09-12

Network centralities in GeoHabnet

Rendered fromLinkWeightsAnalysis.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2024-02-27
Started: 2024-02-02

Readme and manuals

Help Manual

Help pageTopics
Internal function to extract risk indices from a list of crop rasters..indices
Calculate and plot mapsconnectivity
Get raster object for cropcropharvest_rast
Get sum of rasters for individual cropscrops_rast
Distance methods supporteddist_methods
GeoModel class.model_ob GeoModel-class
GeoNetworkGeoNetwork-class host_density<-,GeoNetwork-method
GeoRaster class.rast_ro GeoRasters-class
Get geographical scales from the parametersgeoscale_param
Get Parametersget_parameters
Get rasters object from parametersget_rasters
Global geographical extentglobal_scales
GlobalRast class.grast_ro GlobalRast-class
Gmap classGmap-class setmaps
Plot a Raster* objectgplot
Calculate difference maphci_diff
Calculate mean of raster objectshci_mean
Calculate variance of CCRIhci_variance
Set the host density.host_density<-
Dispersal kernelsinv_powerlaw neg_expo
Load Parameters from YAML Fileload_parameters
Supported sources for Mapspammapspam
Supported sources for monfredamonfreda
Network densityndplot
Network densityndplot,GeoNetwork-method
Calculation on network metrics a.k.a centralities.betweeness closeness degree ev nn_sum node_strength pagerank
Reset parameters.yamlreset_params
Get resolution valuereso
Get risk indicesrisk_indices
RiskMap classRiskMap-class
Run sensitivity analysismsean_onrast sa_onrasters
Sensitivity analysis across maps of habitat connectivitymsean sean
Search for cropsearch_crop
Sensitivity analysis for habitat connectivitysensitivity_analysis
Set global geographical extentset_global_scales
Set Parametersset_parameters
Sets the map slots in the Gmap object.setmaps,Gmap-method
Set properties of the GeoModel object.setprops
Set properties of the GeoModel object.setprops,GeoModel,character,numeric,numeric-method
Raster for mapspam crop.sp_rast
Returns metrics currently supported in the analysis.supported_metrics
Get supported sources of cropssupported_sources
Get raster object from tif filetiff_torast